1) Explain about setup time and hold time, what will happen if there is setup time and hold tine violation, how to overcome this?
Set up time is the amount of time before the clock edge that the input signal needs to be stable to guarantee it is accepted properly on the clock edge.
Hold time is the amount of time after the clock edge that same input signal has to be held before changing it to make sure it is sensed properly at the clock edge.
Whenever there are setup and hold time violations in any flip-flop, it enters a state where its output is unpredictable: this state is known as metastable state (quasi stable state); at the end of metastable state, the flip-flop settles down to either '1' or '0'. This whole process is known as metastability.
2) What is skew, what are problems associated with it and how to minimize it?
In circuit design, clock skew is a phenomenon in synchronous circuits in which the clock signal (sent from the clock circuit) arrives at different components at different times.
This is typically due to two causes. The first is a material flaw, which causes a signal to travel faster or slower than expected. The second is distance: if the signal has to travel the entire length of a circuit, it will likely (depending on the circuit's size) arrive at different parts of the circuit at different times. Clock skew can cause harm in two ways. Suppose that a logic path travels through combinational logic from a source flip-flop to a destination flip-flop. If the destination flip-flop receives the clock tick later than the source flip-flop, and if the logic path delay is short enough, then the data signal might arrive at the destination flip-flop before the clock tick, destroying there the previous data that should have been clocked through. This is called a hold violation because the previous data is not held long enough at the destination flip-flop to be properly clocked through. If the destination flip-flop receives the clock tick earlier than the source flip-flop, then the data signal has that much less time to reach the destination flip-flop before the next clock tick. If it fails to do so, a setup violation occurs, so-called because the new data was not set up and stable before the next clock tick arrived. A hold violation is more serious than a setup violation because it cannot be fixed by increasing the clock period.
Clock skew, if done right, can also benefit a circuit. It can be intentionally introduced to decrease the clock period at which the circuit will operate correctly, and/or to increase the setup or hold safety margins. The optimal set of clock delays is determined by a linear program, in which a setup and a hold constraint appears for each logic path. In this linear program, zero clock skew is merely a feasible point.
Clock skew can be minimized by proper routing of clock signal (clock distribution tree) or putting variable delay buffer so that all clock inputs arrive at the same time
3. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)
4.Implement an 2-input AND gate using a 2x1 mux.
A Multiplexer is a combinational circut which selects one of many input signals and directs to the only out put.
can you please increase the size of question
ReplyDelete